ASTEROIDE TOUTATIS


ASTRÓNOMOS OBSERVAN EL PASO DEL ASTEROIDE TOUTATIS
Considerado uno de los más grandes asteroides cercanos que orbitan el Sol

Astrónomos del mundo estaban preparados para presenciar el paso del gigantesco asteroide Toutatis el pasado 12 de Diciembre a las 5:40 hora UTC, a 6,9 millones de kilómetros de la Tierra, en su viaje entre nuestro Planeta y el Sol.
El asteroide 4179 Toutatis mide nada menos que 4,6 kilómetros por 1, 9 kilómetros y es considerado uno de los más grandes asteroides cercanos que orbitan el Sol. Está viajando a 11,9 kilómetros por segundo, de acuerdo al registro de Objetos Cercanos a la Tierra de la NASA.
Según el astrónomo italiano, Diego Turrini del Instituto de Astrofísica (INAF) y Planetología Espacial (IAPS) de Italia, “el seguimiento de Toutatis no es porque se crea un peligro para nuestro planeta”.
Turrini explica que el problema es que las órbitas de estos asteroides pueden cambiar en la medida que se acercan.
“Estas medidas sirven para determinar siempre con mayor detalle las futuras previsiones relacionadas al paso de estos objetos vecinos a la Tierra, llamados NEO, Near Earth Objects”, dijo Turrini en su comunicado.
El mayor acercamiento de Toutatis en este sigo fue el 29 de septiembre de 2004 a 1,5 millones de kilómetros de la Tierra. La anterior aproximación fue en 2008 a 7,5 millones de kilómetros de distancia.

La relatividad general: la percepción de Einstein


En 1905, a la edad de 26 años, Albert Einstein propuso su teoría de la relatividad especial. La teoría conciliaba la física de los cuerpos en movimiento desarrollada por Galileo Galilei y Newton, con las leyes de la radiación electromagnética. Se postula que la velocidad de la luz es siempre la misma, independientemente del movimiento de la persona que lo mide. La relatividad especial implica que el espacio y el tiempo se entrelazan en un grado nunca antes imaginado.
A partir de 1907, Einstein comenzó a tratar de ampliar la relatividad especial para incluir la gravedad. Su primer éxito vino cuando estaba trabajando en una oficina de patentes en Berna, Suiza. "De repente un pensamiento me golpeó", recordó. "Si un hombre cae libremente, no sentiría su peso ... Este experimento mental simple ... me llevó a la teoría de la gravedad". Se dio cuenta de que existe una profunda relación entre los sistemas afectados por la gravedad y los que están acelerando.
El próximo paso adelante se produjo cuando Einstein introdujo las matemáticas geométricas desarrolladas por los matemáticos alemanes del siglo XIX Carl Friedrich Gauss y Bernhard Riemann. Einstein aplicó su trabajo para escribir las ecuaciones que relacionan la geometría del espacio-tiempo con la energía que contiene. Ahora conocidas como las ecuaciones de campo de Einstein, fueron publicadas en 1916, y sustituyeron a la ley de la Gravitación Universal de Newton. Estas ecuaciones siguen utilizándose hoy en día.
Usando la ley de la relatividad general, Einstein formuló una serie de predicciones. Demostró, por ejemplo, cómo su teoría explicaba el movimiento del planeta Mercurio. También predijo que un objeto masivo,como el Sol, debe distorsionar el camino que recorre la luz al pasar cerca de él. La geometría del espacio se comporta entonces como si fuera una lente.
Einstein también sostuvo que la longitud de onda de la luz emitida por una fuente cercana a un objeto masivo se debería estirar, es decir, debería sufrir un corrimiento hacia el rojo, ya que sale del espacio-tiempo curvado cercano al objeto masivo. Estas tres predicciones ahora se llaman las tres pruebas clásicas de la relatividad general.

La relatividad general.

En 1919, el astrónomo inglés Arthur Eddington  viajó a la isla de Príncipe situada en la costa de África occidental para ver si podía detectar la lente de la luz predicha por la relatividad general. Su plan era observar un cúmulo brillante de estrellas llamadas las Híades en el momento en el que el Sol pasaba delante de ellas. Para ver la luz de las estrellas, Eddington necesitaba un eclipse total de Sol para suprimir el resplandor del nuestra estrella.
Si la teoría de Einstein es correcta, las posiciones de las estrellas de las Híades deberían cambiar en un porcentaje aproximado de una parte entre dos mil de un grado.
Para señalar la posición de las Híades en el cielo, Eddington primero tomó una fotografía en la noche de Oxford. Luego, el 29 de mayo de 1919, fotografió a las Híades mientras yacían casi directamente detrás del Sol durante el eclipse total que se produjo ese día en la isla de Príncipe. Comparando las dos mediciones, Eddington fue capaz de demostrar que el cambio fue como Einstein había predicho y demasiado grande para ser explicado por la teoría de Newton.

Tras la expedición del eclipse, hubo cierta controversia en creer que los datos del análisis de Eddington habían sido correctos. Pero en la década de 1970, cuando las placas fotográficas fueron analizadas nuevamente, el análisis de Eddington demostró ser correcto.
El periódico The Times de Londres publicó: "triunfa la Teoría de Einstein". A partir de entonces, a medida que se han demostrado más consecuencias de su teoría, la relatividad general se ha arraigado en el saber popular, con su descripción de un Universo en expansión y los famosos agujeros negros. En 1959, Robert Pound y Glen Rebka anunciaban la comprobación del corrimiento al rojo de la luz (corrimiento de la longitud de onda), emitida por una estrella que se aleja de la Tierra a gran velocidad, lo que constituía la tercera prueba clásica, propuesta por Einstein en 1907.

Bosón de Higgs


El bosón de Higgs o partícula de Higgs es una partícula elemental propuesta en el Modelo estándar de física de partículas. Recibe su nombre en honor a Peter Higgs quien, junto con otros, propuso en 1964, el hoy llamado mecanismo de Higgs, para explicar el origen de la masa de las partículas elementales. El Bosón de Higgs constituye el cuanto del campo de Higgs, (la más pequeña excitación posible de este campo). Según el modelo propuesto, no posee espín, carga eléctrica o color, es muy inestable y se desintegra rápidamente, su vida media es del orden del zeptosegundo. En algunas variantes del Modelo estándar puede haber varios bosones de Higgs.
La existencia del bosón de Higgs y del campo de Higgs asociado serían el más simple de varios métodos del Modelo estándar de física de partículas que intentan explicar la razón de la existencia de masa en las partículas elementales. Esta teoría sugiere que un campo impregna todo el espacio, y que las partículas elementales que interactúan con él adquieren masa, mientras que las que no interactúan con él, no la tienen. En particular, dicho mecanismo justifica la enorme masa de los bosones vectoriales W y Z, como también la ausencia de masa de los fotones. Tanto las partículas W y Z, como el fotón son bosones sin masa propia, los primeros muestran una enorme masa porque interactúan fuertemente con el campo de Higgs, y el fotón no muestra ninguna masa porque no interactúa en absoluto con el campo de Higgs.
El bosón de Higgs ha sido objeto de una larga búsqueda en física de partículas. Si se demostrara su existencia, el modelo estaría completo. Si se demostrara que no existe, otros modelos propuestos en los que no se involucra el Higgs podrían ser considerados.
El 4 de julio de 2012, el CERN anunció la observación de una nueva partícula «consistente con el bosón de Higgs», pero se necesita más tiempo y datos para confirmarlo.

El Gran Colisionador de Hadrones (LHC)


El Gran Colisionador de Hadrones (LHC)

El Gran Colisionador de Hadrones (LHC, por sus siglas en inglés) es el mayor acelerador de partículas del mundo. En este experimento, los físicos del Centro Europeo para la Investigación Nuclear (CERN) hacen chocar entre sí partículas subatómicas (principalmente protones, uno de los constituyentes del núcleo del átomo) en puntos seleccionados donde se ubican grandes detectores (ATLAS, CMS, LHCb y ALICE). Estos registran las partículas resultantes de las colisiones para estudiar los elementos que componen la materia de la que está hecha el Universo, incluidos nosotros mismos, y sus interacciones.
El LHC
Situado en la frontera franco-suiza cerca de Ginebra, el LHC es un anillo de 27 kilómetros de circunferencia ubicado a 100 metros bajo tierra. Es una de las máquinas más complejas construida nunca: sus 9.300 imanes superconductores, fundamentales para hacer girar los haces de partículas a velocidades cercanas a las de la luz, deben refrigerarse a una temperatura inferior a la del espacio exterior (-270 grados centígrados, cerca del cero absoluto); el interior del anillo es el lugar más vacío del Sistema Solar (10-13 atmósferas) para evitar que las partículas colisionen con moléculas de gas; y cuando las partículas colisionan entre sí se generan temperaturas 100.000 veces más calientes que el interior del Sol.
Sección del tubo del LHC
Tras su inauguración en 2008, el LHC comenzó su actual periodo de funcionamiento a finales de 2009. A finales de marzo de 2010 alcanzó los 7 teraelectronvoltios (TeV) de energía de colisión entre partículas, la mayor registrada en un experimento de este tipo. A partir de 2013 alcanzará progresivamente la energía de colisión para la que está diseñado, 14 TeV, y se mantendra operativo durante al menos 15 años. Durante ese periodo los científicos esperan obtener datos suficientes para profundizar en el conocimiento del origen y formación del Universo, así como resolver el enigma del origen de la masa mediante la búsqueda del llamado bosón de Higgs, la pieza que falta por descubrir en el Modelo Estándar de Física de Partículas.

Experimento de Michelson-Morley


El experimento de Michelson y Morley fue uno de los más importantes y famosos de la historia de la física. Realizado en 1887 por Albert Abraham Michelson (Premio Nobel de Física, 1907 ) y Edward Morley, está considerado como la primera prueba contra la teoría del éter. El resultado del experimento constituiría posteriormente la base experimental de la teoría de la relatividad especial de Einstein.


La teoría física del final del siglo XIX postulaba que, al igual que las olas y el sonido que son ondas que necesitan un medio para transportarse (como el agua o el aire), la luz también necesitaría un medio, llamado "éter". Como la velocidad de la luzes tan grande, diseñar un experimento para detectar la presencia del éter era muy difícil.
El propósito de Michelson y Morley era medir la velocidad relativa a la que se mueve la Tierra con respecto al éter.
Cada año, la Tierra recorre una distancia enorme en su órbita alrededor del Sol, a una velocidad de 30 km/s (más de 100.000 km/h). Se creía que la dirección del "viento del éter" con respecto a la posición de nuestra estrella variaría al medirse desde la Tierra, y así podría ser detectado. Por esta razón, el experimento debería llevarse a cabo en varios momentos del año.
El efecto del viento del éter sobre las ondas de luz, sería como el de la corriente de un río sobre un nadador que se mueve a favor o en contra de ella. En algunos momentos el nadador sería frenado, y en otros impulsado. Esto es lo que se creía que pasaría con la luz al llegar a la Tierra con diferentes posiciones con respecto al éter: debería llegar con diferentes velocidades. La clave es que, en viajes circulares, la diferencia de velocidades es muy pequeña, del orden de la millonésima de la millonésima de un segundo. Sin embargo, Michelson, muy experimentado con la medición de la velocidad de la luz, ideó una manera de medir esta mínima diferencia.

Michelson y Morley en el año 1887, cuyo "interferometro" con aire como medio, pudieron obtener una longitud de trayectoria óptica (L1 + L2) de cerca de 22 metros. En ese experimento la longitud de cada brazo del interferómetro fue de 11 metros.


De manera que ΔN = ( 2 L / λ ) x(v2 /c2)  si se escoge λ = 5,5 x10-7  y (v/c)=10-4 , entonces la ecuación es:

 ΔN = (22x10-8m)/(5,5x10-7m)=0.04

Si la diferencia de trayectoria óptica —que hay entre los haces en el Interferómetro de Michelson— varía en una distancia igual a la longitud de onda, entonces, una raya o franja habrá de trasladarse a través del retículo de la mirilla de observador. Si ΔN representa el número de franjas que pasan por el retículo, a medida que el espectro se corre, y si se utiliza luz de longitud de onda λ, de modo que el período de una vibración sea T = 1 / v = λ / c, entonces:

ΔN =(t1-t2)/T=((L1+L2)/cT)x(v2/c2)=((L1+L2)/λ)x(v2/c2)=0,04

Si se varía la longitud de algunos de los caminos ópticos del interferómetro (la longitud de uno de los brazos del instrumento), las franjas de interferencia se mueven a través de la pantalla a medida que en cada punto las ondas se refuerzan y anulan sucesivamente. Por ello, el aparato estacionario no nos puede decir nada referente a diferencias de tiempo en el recorrido de los dos caminos (los brazos del interferómetro). Sin embargo, si se gira el aparato 90º, los dos caminos cambian su orientación con respecto a la hipotética corriente de éter, de tal manera que el rayo que antes necesitaba un tiempo t 1 para el recorrido total, requiere ahora un tiempo t 2 y viceversa. Si estos tiempos son diferentes, las franjas se moverán a través de la pantalla durante el giro.
En donde v es la velocidad del éter que tomaremos igual a la velocidad de rotación de la tierra en su órbita de valor 3 x 104 m/s y c es la velocidad de la luz de valor 3 x 108 m/s
Como el desplazamiento de franjas de interferencia se verifica en ambos recorridos, el desplazamiento total debería ser de 2N o sea 0,4 franjas. Un desplazamiento de esta magnitud es fácilmente observable, y en consecuencia Michelson y Morley tenían esperanza de demostrar directamente la existencia del éter.
·      Ante la sorpresa general, no se detectó absolutamente ningún desplazamiento de franjas de interferencia.
·      Los resultados del experimento ya singularizado se interpretaron de tal forma que se concluyó:
·      El éter carecía de propiedades medibles resultando, como consecuencia directa de aquello, que la hipótesis del éter era insostenible.
·      Se vislumbraba el nacimiento de nuevos principios para física: la contracción de la longitud; la dilatación del tiempo; y una constante universal.

Solucionario 4